Source code for pyo.lib.events

"""
This submodule contains a set of tools to generate sequence of events.

The purpose of the Event framework is to allow the user to generate a
sequence of events with as few as possible parameters to specify.

:py:class:`Events` is the heart of the framework. An Events object computes
parameters, generally designed with event generator objects, builds the events
and plays the sequence.

See the Events framework examples in the documentation for different use cases.

"""

"""
Copyright 2019 Olivier Belanger

This file is part of pyo, a python module to help digital signal
processing script creation.

pyo is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

pyo is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with pyo.  If not, see <http://www.gnu.org/licenses/>.
"""
import math
import copy
import random
from ._core import *
from .pattern import Pattern, CallAfter
from .tableprocess import TableRead
from .controls import Fader, Adsr
from .generators import RCOsc
from .effects import STRev
from .pan import Pan

inf = math.inf

PYO_EVENT_OPERATOR_ADD = 1000
PYO_EVENT_OPERATOR_SUB = 1001
PYO_EVENT_OPERATOR_MUL = 1002
PYO_EVENT_OPERATOR_DIV = 1003
PYO_EVENT_OPERATOR_POW = 1004
PYO_EVENT_OPERATOR_MOD = 1005
PYO_EVENT_OPERATOR_FLR = 1006

PYO_EVENT_FILTER_FLOOR = 1100
PYO_EVENT_FILTER_CEIL = 1101
PYO_EVENT_FILTER_ROUND = 1102
PYO_EVENT_FILTER_ABS = 1103
PYO_EVENT_FILTER_SNAP = 1104
PYO_EVENT_FILTER_DEVIATE = 1105
PYO_EVENT_FILTER_CLIP = 1106
PYO_EVENT_FILTER_SCALE = 1107
PYO_EVENT_FILTER_RESCALE = 1108
PYO_EVENT_FILTER_IFTRUE = 1109

# Utility functions
###################
def degreeToMidiNote(value):
    "Converts an octave.degree notation to a MIDI note."
    st = str(value)
    if st.count(".") == 0:
        try:
            oct = int(st)
            deg = 0
        except:
            oct = 0
            deg = 0
    elif st.count(".") == 1:
        dotPos = st.find(".")
        if len(st) >= (dotPos + 3):
            st = st[: dotPos + 3]
        try:
            oct, deg = st.split(".")
            if len(deg) == 1:
                deg = "%s0" % deg
            oct, deg = int(oct), int(deg)
        except:
            oct, deg = 0, 0

    return oct * 12 + deg


def midiNoteToDegree(value):
    "Converts a MIDI note to an octave.degree notation."
    oct = int(value / 12)
    deg = value % 12
    return "%d.%02d" % (oct, deg)


def getValueFromAttribute(master, key, currentDict, valueIfNone=None):
    "Retrieve the value of an Events attribute, resolving its type."
    attribute = master[key]
    returnValue = None

    if key in currentDict:
        return currentDict[key]

    elif attribute is None:
        returnValue = valueIfNone

    elif isinstance(attribute, EventKey):
        if attribute.externalMaster is None:
            if attribute.getKey() in currentDict:
                returnValue = currentDict[attribute.getKey()]
            else:
                returnValue = getValueFromAttribute(master, attribute.getKey(), currentDict)
                currentDict[attribute.getKey()] = returnValue
        else:
            returnValue = attribute.externalMaster.getCurrentDict().get(attribute.getKey(), None)

    elif isinstance(attribute, PyoObject):
        returnValue = attribute.get(False)
    elif isinstance(attribute, PyoTableObject):
        returnValue = attribute
    else:
        attribute.setMaster(master)
        returnValue = attribute.next()

    currentDict[key] = returnValue

    return returnValue


# Utility classes
#################
class MarkovGen:
    def __init__(self, lst, order=2):
        self.originalList = lst
        self.temporaryList = []
        self.playedNotes = []
        self.order = order
        self.startPlayback()

    def startPlayback(self):
        self.playedNotes = []
        for val in self.originalList:
            self.temporaryList.append(val)
        for i in range(self.order):
            self.temporaryList.append(self.originalList[i])
        self.playedNotes = self.originalList[len(self.originalList) - self.order :]

    def next(self):
        newValue = 0
        condition = False
        self.probTable = []

        for i in range(len(self.temporaryList) - self.order):
            for iord in range(self.order):
                if (
                    self.playedNotes[len(self.playedNotes) - (iord + 1)]
                    != self.temporaryList[(self.order - 1) + i - iord]
                ):
                    condition = False
                    break
                else:
                    condition = True

            if condition:
                self.probTable.append(self.temporaryList[i + self.order])

        newValue = self.probTable[random.randint(0, (len(self.probTable) - 1))]
        self.playedNotes.append(newValue)
        return newValue

    def setOrder(self, order):
        if order != self.order:
            self.order = order
            self.startPlayback()


# Instruments
#############
[docs]class EventInstrument(object): """ Base class for an Events instrument. All attributes given to the Events object can be accessed as self.attribute_name inside the instrument. This base class constructs an envelope, named self.env, according to the value given to 'envelope' (ex.: a LinTable object) or to 'attack', 'decay', 'sustain' and 'release' attributes of the event. The envelope is also scaled by the value of self.amp, defined by 'amp', 'db' or 'midivel' arguments of the Events object. This base class also creates a self.freq variable based on 'freq', 'degree' or 'midinote' arguments. This variable can be used in the instrument to control the pitch of the sound. All resources are automatically destroyed when the lifetime of the event is over. The lifetime of the event is set as self.dur + self.tail ('dur' or 'beat' and 'tail' arguments of Events). .. note:: The user has almost no reason to instantiate an EventInstrument object himself. Instead, he should use it as a parent class for its own instruments. """ def __init__(self, **args): for key, val in args.items(): setattr(self, key, val) if self.envelope is not None: self.env = TableRead(self.envelope, 1.0 / self.dur, mul=self.amp).play() elif self.decay is not None: self.env = Adsr(self.attack, self.decay, self.sustain, self.release, dur=self.dur, mul=self.amp).play() else: self.env = Fader(fadein=self.attack, fadeout=self.release, dur=self.dur, mul=self.amp).play() self.clearWhenDone = CallAfter(self.clear, time=0) self.clearWhenDone.play(delay=self.dur + self.tail, dur=0.25) def clear(self): self.removeFunction(self.instanceId)
class DefaultInstrument(EventInstrument): """ The default instrument, playing a stereo RC oscillator, used when 'instr' attribute is not defined for an Events object. """ def __init__(self, **args): EventInstrument.__init__(self, **args) self.osc = RCOsc(freq=self.freq, sharp=0.5, mul=self.env) self.sig = self.osc.mix(2).out() # Event Scale #############
[docs]class EventScale: """ Musical scale builder. EventScale constructs a list of pitches according to its arguments. EventScale works similarly to list, ie. uses slicing with square brackets to access data, with the first element at index 0. It also accept the len() function, which returns the number of elements in the scale. :Args: root: str, optional The base note (fundamental) of the scale. Possible values are: 'C', 'C#', 'Db', 'D', 'D#', 'Eb', 'E', 'F', 'F#', 'Gb', 'G', 'G#', 'Ab', 'A', 'A#', 'Bb', 'B'. Defaults to 'C'. scale: str, optional The scale name to construct. Possible scales are: 'major', 'minorH', 'minorM', 'ionian', 'dorian', 'phrygian', 'lydian', 'mixolydian', 'aeolian', 'locrian', 'wholeTone', 'majorPenta', 'minorPenta', 'egyptian', 'majorBlues', 'minorBlues', 'minorHungarian'. Defaults to 'major'. first: int, optional The first octave of the generated scale, in multiple of 12. A value of 4, for a root of 'C' means the first note of the scale will be 48. Defaults to 4. octaves: int, optional The number of octaves in the generated scale. Defaults to 2. type: int, optional The unit type in which the values are stored. Possible types are: 0: MIDI note 1: Hertz 2: octave.degree notation (MIDI note 48 is 4.00 in octave.degrees) .. note:: Here is a table showing the relationship between the three unit types that EventScale can handle. ======== ======== ======== midi oct.deg Hertz ======== ======== ======== 48 4.00 130.81 50 4.02 146.83 52 4.04 164.81 53 4.05 174.61 55 4.07 195.99 57 4.09 220.00 59 4.11 246.94 60 5.00 261.62 ======== ======== ======== >>> s = Server().boot() >>> s.start() >>> scl = EventScale(root="C", scale="major", first=4, octaves=2, type=2) >>> e = Events(degree=EventDrunk(scl, maxStep=-2), beat=1/4., db=-6).play() """ def __init__(self, root="C", scale="major", first=4, octaves=2, type=0): self.rootDegrees = { "C": 0, "C#": 1, "Db": 1, "D": 2, "D#": 3, "Eb": 3, "E": 4, "F": 5, "F#": 6, "Gb": 6, "G": 7, "G#": 8, "Ab": 8, "A": 9, "A#": 10, "Bb": 10, "B": 11, } self.scales = { "major": [0, 2, 4, 5, 7, 9, 11], "minorH": [0, 2, 3, 5, 7, 8, 11], "minorM": [0, 2, 3, 5, 7, 9, 11], "ionian": [0, 2, 4, 5, 7, 9, 11], "dorian": [0, 2, 3, 5, 7, 9, 10], "phrygian": [0, 1, 3, 5, 7, 8, 10], "lydian": [0, 2, 4, 6, 7, 9, 11], "mixolydian": [0, 2, 4, 5, 7, 9, 10], "aeolian": [0, 2, 3, 5, 7, 8, 10], "locrian": [0, 1, 3, 5, 6, 8, 10], "wholeTone": [0, 2, 4, 6, 8, 10], "majorPenta": [0, 2, 4, 7, 9], "minorPenta": [0, 3, 5, 7, 10], "egyptian": [0, 2, 5, 7, 10], "majorBlues": [0, 2, 5, 7, 9], "minorBlues": [0, 3, 5, 8, 10], "minorHungarian": [0, 2, 3, 6, 7, 8, 11], } self._init = True self._length = 0 self._root = "c" self._scale = "major" self._first = first self._octaves = octaves self._type = type self.setRoot(root) self.setScale(scale) self.data = [] self._init = False self._populate() def _populate(self): if self._init: return del self.data[:] degree = self.rootDegrees.get(self._root, self.rootDegrees["C"]) currentScale = self.scales.get(self._scale, self.scales["major"]) length = len(currentScale) for i in range(length * self._octaves + 1): octave = (self._first + int(i / length)) * 12 self.data.append(currentScale[i % length] + octave + degree) self._length = len(self.data) if self._type == 1: self.data = midiToHz(self.data) elif self._type == 2: self.data = [midiNoteToDegree(x) for x in self.data] def __len__(self): return self._length def __getitem__(self, key): return self.data[key] def __setitem__(self, key, item): self.data[key] = item
[docs] def setRoot(self, x): """ Replace the `root` attribute and reconstruct the scale. :Args: x: string New `root` attribute. """ if x not in self.rootDegrees: print("EventScale: does not recognize root '%s'..." % x) print("... Using 'C'.") x = "C" if x != self._root: self._root = x self._populate()
[docs] def setScale(self, x): """ Replace the `scale` attribute and reconstruct the scale. :Args: x: string New `scale` attribute. """ if x not in self.scales: print("EventScale: does not recognize scale '%s'..." % x) print("... Using 'major'.") x = "major" if x != self._scale: self._scale = x self._populate()
[docs] def setFirst(self, x): """ Replace the `first` attribute and reconstruct the scale. :Args: x: int New `int` attribute. """ if x != self._first: self._first = x self._populate()
[docs] def setOctaves(self, x): """ Replace the `octaves` attribute and reconstruct the scale. :Args: x: int New `octaves` attribute. """ if x != self._octaves: self._octaves = x self._populate()
[docs] def setType(self, x): """ Replace the `type` attribute and reconstruct the scale. :Args: x: int New `type` attribute. """ if x != self._type: self._type = x self._populate()
@property def root(self): """string. Name of the fundamental key.""" return self._root @root.setter def root(self, x): self.setRoot(x) @property def scale(self): """string. Name of scale to generate.""" return self._scale @scale.setter def scale(self, x): self.setScale(x) @property def first(self): """int. First octave to generate.""" return self._first @first.setter def first(self, x): self.setFirst(x) @property def octaves(self): """int. Number of octaves to generate.""" return self._octaves @octaves.setter def octaves(self, x): self.setOctaves(x) @property def type(self): """int. Unit in which pitch values are stored.""" return self._type @type.setter def type(self, x): self.setType(x)
# Event Generators ##################
[docs]class EventGenerator: """ Base class for all event generators. This class contains the common behaviours of all event generators. Each EventGenerator contains a particular algorithm that can produce a sequence of values triggered by an Events mecanism for one of its arguments. The EventGenerator allows very flexible control of the algorithm parameters. It can be a single value, another EventGenerator or an audio signal (PyoObject). Arithmetic operations are allowed on EventGenerator. An EventDummy is then created to apply the operation to each value produced by the generator. Arithmetic operators are: +: float, PyoObject or EventGenerator Addition. -: float, PyoObject or EventGenerator Substraction *: float, PyoObject or EventGenerator Multiplication /: float, PyoObject or EventGenerator Division %: float, PyoObject or EventGenerator Modulo (remaining of the division) **: float, PyoObject or EventGenerator Exponent //: float, PyoObject or EventGenerator Quantizer (returns te nearest multiple of its argument) EventGenerator has a number of filter methods that can be applied on any generator to modify its output values. Available filter methods are: floor: Return an EventFilter computing the largest integer less than or equal to its input value. ceil: Return an EventFilter computing the smallest integer greater than or equal to its input value. round: Return an EventFilter computing the nearest integer to its input value. snap: Return an EventFilter which choose the nearest value of its input value in a list of choices. deviate: Return an EventFilter which randomly move, up or down, its input value. clip: Return an EventFilter which clips its input value between predefined limits. scale: Return an EventFilter which maps its input value, in the range 0 to 1, to an output range, with a scaling curve. rescale: Return an EventFilter which maps its input value, given in an input range, to an output range with a scaling curve. iftrue: Return an EventFilter which compares its input value to a comparison value and outputs it if the comparison is True. """ def __init__(self): self.generator = None self.master = None self.stopEventsWhenDone = False def _inspect_generator(self, generator): # Inspect the value passed as a generator argument. if type(generator) in [type([]), type(())]: generator = EventSeq(generator) elif type(generator) in [type(0), type(0.0)]: generator = EventSeq([generator]) return generator def _inspect_values(self, values): # Inspect the value passed as a values argument. if not values: values = [0] return values def _inspect_occurrences(self, occurrences): # Inspect the value passed as an occurrences argument. if occurrences < 1: occurrences = 1 return occurrences def _internalGeneratorNextCall(self): # Return the next value of an internal generator. if isinstance(self.generator, EventKey): if self.generator.needToResetTarget: self.generator.needToResetTarget = False try: self.master[self.generator.getKey()].reset() if self.generator.getKey() in self.master.getCurrentDict(): del self.master.getCurrentDict()[self.generator.getKey()] except: pass value = getValueFromAttribute(self.master, self.generator.getKey(), self.master.getCurrentDict()) else: self.generator.setMaster(self.master) value = self.generator.next() if value is None: self.generator = None return self.next() return value def _checkValueTypeAndIncrementCount(self, value): # Final check of the value produced by the generator in the next() method. self.count += 1 if isinstance(value, EventGenerator): self.generator = value self.generator.reset() value = self.next() elif isinstance(value, PyoObject): value = value.get(False) return value def __add__(self, generator): generator = self._inspect_generator(generator) return EventDummy(self, generator, PYO_EVENT_OPERATOR_ADD) def __sub__(self, generator): generator = self._inspect_generator(generator) return EventDummy(self, generator, PYO_EVENT_OPERATOR_SUB) def __mul__(self, generator): generator = self._inspect_generator(generator) return EventDummy(self, generator, PYO_EVENT_OPERATOR_MUL) def __div__(self, generator): generator = self._inspect_generator(generator) return EventDummy(self, generator, PYO_EVENT_OPERATOR_DIV) def __truediv__(self, generator): generator = self._inspect_generator(generator) return EventDummy(self, generator, PYO_EVENT_OPERATOR_DIV) def __pow__(self, generator): generator = self._inspect_generator(generator) return EventDummy(self, generator, PYO_EVENT_OPERATOR_POW) def __mod__(self, generator): generator = self._inspect_generator(generator) return EventDummy(self, generator, PYO_EVENT_OPERATOR_MOD) def __floordiv__(self, generator): generator = self._inspect_generator(generator) return EventDummy(self, generator, PYO_EVENT_OPERATOR_FLR) def setMaster(self, master): # Keep a reference of the master player (an Events object). self.master = master def copy(self): # Return a deep copy of this generator (used in Events.events()). return copy.deepcopy(self) def reset(self): # Reset the generator to its init state. Implemented in child objects. pass def next(self): # Internally called to produce the next value. Implemented in child objects. pass def resetEmbeddedGenerator(self): # Recursively resets embedded generators. Used when starting a sequence. if self.generator is not None: self.generator.resetEmbeddedGenerator() self.generator.reset()
[docs] def floor(self): """ Return an EventFilter computing the largest integer less than or equal to its input value. """ return EventFilter(self, PYO_EVENT_FILTER_FLOOR)
[docs] def ceil(self): """ Return an EventFilter computing the smallest integer greater than or equal to its input value. """ return EventFilter(self, PYO_EVENT_FILTER_CEIL)
[docs] def round(self): """ Return an EventFilter computing the nearest integer to its input value. If two values are equally close, rounding is done toward the even choice. """ return EventFilter(self, PYO_EVENT_FILTER_ROUND)
[docs] def abs(self): """ Return an EventFilter computing the absolute value of its input value. """ return EventFilter(self, PYO_EVENT_FILTER_ABS)
[docs] def snap(self, choice): """ Return an EventFilter which choose the nearest value of its input value in the `choice` list. :Args: choice: list of floats Possible values to output. """ return EventFilter(self, PYO_EVENT_FILTER_SNAP, choice)
[docs] def deviate(self, depth): """ Return an EventFilter which randomly move, up or down, its input value according to the argument `depth`, in percent. :Args: depth: float or PyoObject Percentage of deviation, between 0 and 100. """ return EventFilter(self, PYO_EVENT_FILTER_DEVIATE, depth)
[docs] def clip(self, mini, maxi): """ Return an EventFilter which clips its input value between the limits `mini` and `maxi`. :Args: mini: float or PyoObject Minimum output value. maxi: float or PyoObject Maximum output value. """ return EventFilter(self, PYO_EVENT_FILTER_CLIP, mini, maxi)
[docs] def scale(self, mini, maxi, expon): """ Return an EventFilter which maps its input value, in the range 0 to 1, to an output range, with a scaling curve deternimed bu the `expon` value. :Args: mini: float or PyoObject Minimum output value. maxi: float or PyoObject Maximum output value. expon: float or PyoObject Exponent value, specifies the nature of the scaling curve. Values between 0 and 1 give a logarithmic curve, and values higher than 1 give an exponential curve. """ return EventFilter(self, PYO_EVENT_FILTER_SCALE, mini, maxi, expon)
[docs] def rescale(self, inmin, inmax, outmin, outmax, expon): """ Return an EventFilter which maps its input value, in the range `inmin` to `inmax`, to an output range, `outmin` to `outmax`, with a scaling curve deternimed bu the `expon` value. :Args: inmin: float or PyoObject Minimum input value. inmax: float or PyoObject Maximum input value. outmin: float or PyoObject Minimum output value. outmax: float or PyoObject Maximum output value. expon: float or PyoObject Exponent value, specifies the nature of the scaling curve. Values between 0 and 1 give a logarithmic curve, and values higher than 1 give an exponential curve. """ return EventFilter(self, PYO_EVENT_FILTER_RESCALE, inmin, inmax, outmin, outmax, expon)
[docs] def iftrue(self, op, comp): """ Return an EventFilter which compares its input value to the value given to `comp` argument, using the comparison operator `op`. If the result is True, the input value is sent to the output, otherwise, the last valid value is sent again. :Args: op: string The comparison operator. Valid operators are: '<', '<=', '>', '>=', '==', '!='. comp: float or PyoObject Comparison value. """ return EventFilter(self, PYO_EVENT_FILTER_IFTRUE, op, comp)
[docs]class EventDummy(EventGenerator): "An EventGenerator created internally to handle arithmetic on Events." def __init__(self, generator1, generator2, type): EventGenerator.__init__(self) self.generator1 = generator1 self.generator2 = generator2 self.type = type def next(self): self.generator1.setMaster(self.master) v1 = self.generator1.next() if isinstance(self.generator2, PyoObject): v2 = self.generator2.get(False) else: self.generator2.setMaster(self.master) v2 = self.generator2.next() if v1 is None or v2 is None: return None else: if self.type == PYO_EVENT_OPERATOR_ADD: return v1 + v2 elif self.type == PYO_EVENT_OPERATOR_SUB: return v1 - v2 elif self.type == PYO_EVENT_OPERATOR_MUL: return v1 * v2 elif self.type == PYO_EVENT_OPERATOR_DIV: return v1 / v2 elif self.type == PYO_EVENT_OPERATOR_POW: return v1 ** v2 elif self.type == PYO_EVENT_OPERATOR_MOD: return v1 % v2 elif self.type == PYO_EVENT_OPERATOR_FLR: return math.floor(v1 / v2 + 0.5) * v2
[docs]class EventFilter(EventGenerator): "An EventGenerator created internally to handle simple filter on Events." def __init__(self, generator, type, *args): EventGenerator.__init__(self) self.generator = generator self.type = type self.args = args self.lastValue = 0.0 def next(self): self.generator.setMaster(self.master) value = self.generator.next() if value is None: return None args = [] for arg in self.args: if isinstance(arg, PyoObject): args.append(arg.get(False)) elif isinstance(arg, EventGenerator): arg.setMaster(self.master) args.append(arg.next()) else: args.append(arg) if self.type == PYO_EVENT_FILTER_FLOOR: return math.floor(value) elif self.type == PYO_EVENT_FILTER_CEIL: return math.ceil(value) elif self.type == PYO_EVENT_FILTER_ROUND: return round(value) elif self.type == PYO_EVENT_FILTER_ABS: return abs(value) elif self.type == PYO_EVENT_FILTER_SNAP: return min(args[0], key=lambda x: abs(x - value)) elif self.type == PYO_EVENT_FILTER_DEVIATE: depth = args[0] * 0.01 return value * random.uniform(1.0 - depth, 1.0 + depth) elif self.type == PYO_EVENT_FILTER_CLIP: if value < args[0]: value = args[0] elif value > args[1]: value = args[1] return value elif self.type == PYO_EVENT_FILTER_SCALE: if value < 0.0: value = 0.0 elif value > 1.0: value = 1.0 value = value ** args[2] return value * (args[1] - args[0]) + args[0] elif self.type == PYO_EVENT_FILTER_RESCALE: if value < args[0]: value = args[0] elif value > args[1]: value = args[1] value = (value - args[0]) / (args[1] - args[0]) value = value ** args[4] return value * (args[3] - args[2]) + args[2] elif self.type == PYO_EVENT_FILTER_IFTRUE: if args[0] == "<": istrue = value < args[1] elif args[0] == "<=": istrue = value <= args[1] elif args[0] == ">": istrue = value > args[1] elif args[0] == ">=": istrue = value >= args[1] elif args[0] == "==": istrue = value == args[1] elif args[0] == "!=": istrue = value != args[1] if istrue: self.lastValue = value return value else: return self.lastValue
###################
[docs]class EventKey(EventGenerator): """ An EventGenerator that allow to retrieve the value of another parameter. EventKey returns the current value of another parameter of the Events object where it is used. From there, other processes can be applied (arithmetics, filters) to transform this value. EventKey can also read parameter values from another Events object when one is passed as `master` argument. :Args: key: string The name of the parameter to read from. master: Events, optional The Events object from which to read the parameter value. If None (the default), the current Events object is used. >>> s = Server().boot() >>> s.start() >>> # The lower the pitch value, the louder is the note. >>> dbkey = EventKey("midinote").rescale(48,84,-3,-32,1) >>> e = Events(midinote=list(range(48,84,2)), beat=1/4., db=dbkey).play() """ def __init__(self, key, master=None): EventGenerator.__init__(self) self.key = key self.needToResetTarget = False self.externalMaster = master
[docs] def getKey(self): """ Returns the key, as a string, of the parameter to read from. """ return self.key
def reset(self): self.needToResetTarget = True def next(self): if self.externalMaster is None: return getValueFromAttribute(self.master, self.getKey(), self.master.getCurrentDict()) else: return getValueFromAttribute(self.externalMaster, self.getKey(), self.externalMaster.getCurrentDict())
###################
[docs]class EventSeq(EventGenerator): """ Plays through an entire list of values many times. EventSeq will loop over its list of values a number of times defined by the occurrences argument. :Args: values: EventScale or list List of values to loop over. Values in list can be floats, PyoObject or other EventGenerator. occurrences: int, optional Number of times the sequence is entirely played in loop. Defaults to inf (infinite). stopEventsWhenDone: bool, optional If True, the Events playback will stop if this generator reaches its end. If False, the Events will ignore this signal and probably get None as value for the given parameter. It's the user responsability to handle this case correctly. Defaults to True. .. note:: If an Events argument receives a single value or a list, it will be automatically converted to an EventSeq. >>> s = Server().boot() >>> s.start() >>> e = Events(freq=EventSeq(midiToHz([60, 64, 67, 72])), beat=1/4.).play() """ def __init__(self, values, occurrences=inf, stopEventsWhenDone=True): EventGenerator.__init__(self) self.values = self._inspect_values(values) self.occurrences = self._inspect_occurrences(occurrences) self.length = len(self.values) self.stopEventsWhenDone = stopEventsWhenDone self.reset() def __len__(self): return self.length * self.occurrences def reset(self): self.generator = None self.count = self.completed = 0 def next(self): if self.generator is not None: return self._internalGeneratorNextCall() self.length = len(self.values) if self.count < self.length: value = self.values[self.count] return self._checkValueTypeAndIncrementCount(value) else: self.completed += 1 if self.completed >= self.occurrences: return None else: self.count = 0 return self.next()
[docs]class EventSlide(EventGenerator): """ Plays overlapping segments from a list of values. EventSlide will play a segment of length `segment` from startpos, then another segment with a start position incremented by `step`, and so on. :Args: values: EventScale or list List of values to read. Values in list can be floats, PyoObject or other EventGenerator. segment: int, PyoObject or EventGenerator Number of values of each segment. step: int, PyoObject or EventGenerator How far to step the start of each segment from the previous. A negative value will step backward. startpos: int, optional The start position of the first segment. A negative value sets the position backward starting from the end of the list. Defaults to 0. wraparound: bool, optional If 'wraparound' if True, indexing wraps around if goes past the beginning or the end of the list. If False, the playback stops if it goes outside the list bounds. Defaults to True. occurrences: int, optional Number of entire segments to play. Defaults to inf (infinite). stopEventsWhenDone: bool, optional If True, the Events playback will stop if this generator reaches its end. If False, the Events will ignore this signal and probably get None as value for the given parameter. It's the user responsability to handle this case correctly. Defaults to True. >>> s = Server().boot() >>> s.start() >>> scl = [5.00, 5.02, 5.03, 5.05, 5.07, 5.08, 5.10, 6.00] >>> e = Events(degree=EventSlide(scl, 3, 1, 0), beat = 1/4., db = -6).play() """ def __init__(self, values, segment, step, startpos=0, wraparound=True, occurrences=inf, stopEventsWhenDone=True): EventGenerator.__init__(self) self.values = self._inspect_values(values) self.occurrences = self._inspect_occurrences(occurrences) self.wraparound = wraparound self.length = len(self.values) self.stopEventsWhenDone = stopEventsWhenDone self.segment = segment self.lastSegment = 1 self.step = step self.lastStep = 1 if startpos < 0: self.startpos = self.length + startpos else: self.startpos = startpos self.reset() def __len__(self): return self.segment * self.occurrences def reset(self): self.generator = None self.count = self.completed = 0 self.start = self.startpos if isinstance(self.segment, EventGenerator): self.segment.reset() if isinstance(self.step, EventGenerator): self.step.reset() def getStepValue(self): if isinstance(self.step, PyoObject): value = self.step.get(False) elif isinstance(self.step, EventGenerator): self.step.setMaster(self.master) value = self.step.next() if value is None: if self.stopEventsWhenDone: return None else: value = self.lastStep else: value = self.step if abs(value) >= self.length: if value < 0: value = -(self.length - 1) else: value = self.length - 1 self.lastStep = int(value) return self.lastStep def getSegmentValue(self): if isinstance(self.segment, PyoObject): value = self.segment.get(False) elif isinstance(self.segment, EventGenerator): self.segment.setMaster(self.master) value = self.segment.next() if value is None: if self.stopEventsWhenDone: return None else: value = self.lastSegment else: value = self.segment if value < 1: value = 1 self.lastSegment = int(value) return self.lastSegment def next(self): if self.generator is not None: return self._internalGeneratorNextCall() self.length = len(self.values) segment = self.getSegmentValue() step = self.getStepValue() if segment is None or step is None: return None if self.count < segment: if step < 0: position = self.start - self.count else: position = self.start + self.count if position < 0: if self.wraparound: position += self.length else: return None elif position >= self.length: if self.wraparound: position -= self.length else: return None value = self.values[position] return self._checkValueTypeAndIncrementCount(value) else: self.completed += 1 if self.completed >= self.occurrences: return None else: self.count = 0 self.start += step if self.start < 0: self.start += self.length elif self.start >= self.length: self.start -= self.length return self.next()
[docs]class EventIndex(EventGenerator): """ Plays values from a list based on a position index. :Args: values: EventScale or list List of values to read. Values in list can be floats, PyoObject or other EventGenerator. index: int, PyoObject or EventGenerator Position to read in the list, starting at 0. occurrences: int, optional Number of values to play. Defaults to inf (infinite). stopEventsWhenDone: bool, optional If True, the Events playback will stop if this generator reaches its end. If False, the Events will ignore this signal and probably get None as value for the given parameter. It's the user responsability to handle this case correctly. Defaults to True. >>> s = Server().boot() >>> s.start() >>> scl = [5.00, 5.02, 5.03, 5.05, 5.07, 5.08, 5.10, 6.00] >>> arp = EventSeq([0, 2, 4, 2, 1, 3, 5, 3, 1, 6, 4, 1]) >>> e = Events(degree = EventIndex(scl, arp), beat = 1/4., db = -6).play() """ def __init__(self, values, index, occurrences=inf, stopEventsWhenDone=True): EventGenerator.__init__(self) self.values = self._inspect_values(values) self.occurrences = self._inspect_occurrences(occurrences) self.index = index self.lastIndex = 0 self.length = len(self.values) self.stopEventsWhenDone = stopEventsWhenDone self.reset() def __len__(self): return self.occurrences def reset(self): self.generator = None self.count = 0 if isinstance(self.index, EventGenerator): self.index.reset() def getIndexValue(self): if isinstance(self.index, PyoObject): value = self.index.get(False) elif isinstance(self.index, EventGenerator): self.index.setMaster(self.master) value = self.index.next() if value is None: if self.stopEventsWhenDone: return None else: value = self.lastIndex else: value = self.index if value < 0: value = 0 elif value >= self.length: value = self.length - 1 self.lastIndex = int(value) return self.lastIndex def next(self): if self.generator is not None: return self._internalGeneratorNextCall() self.length = len(self.values) index = self.getIndexValue() if index is None: return None if self.count < self.occurrences: value = self.values[index] return self._checkValueTypeAndIncrementCount(value) else: return None
[docs]class EventMarkov(EventGenerator): """ Applies a Markov algorithm to a list of values. A Markov chain is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous events. :Args: values: EventScale or list Original list of values. order: int, PyoObject or EventGenerator, optional Order of the Markov chain, between 1 and 10. Determines how many past values will be used to build the probability table for the next note. Defaults to 2. occurrences: int, optional Number of values to play. Defaults to inf (infinite). stopEventsWhenDone: bool, optional If True, the Events playback will stop if this generator reaches its end. If False, the Events will ignore this signal and probably get None as value for the given parameter. It's the user responsability to handle this case correctly. Defaults to True. >>> s = Server().boot() >>> s.start() >>> jesus = [67,69,71,74,72,72,76,74,74,79,78,79,74,71,67,69,71,72,74,76,74,72,71] >>> jesus += [69,71,67,66,67,69,62,66,69,72,71,69,71,67,69,71,74,72,72,76,74,74,79] >>> jesus += [78,79,74,71,67,69,71,64,74,72,71,69,67,62,67,66,67,71,74,79,74,71,67] >>> e = Events(midinote=EventMarkov(jesus, 2), beat=1/4., db=-6).play() """ def __init__(self, values, order=2, occurrences=inf, stopEventsWhenDone=True): EventGenerator.__init__(self) self.values = self._inspect_values(values) self.occurrences = self._inspect_occurrences(occurrences) self.lastOrder = self.order = order self.length = len(self.values) self.stopEventsWhenDone = stopEventsWhenDone self.markov = MarkovGen(values) self.reset() def __len__(self): return self.occurrences def reset(self): self.generator = None self.count = 0 if isinstance(self.order, EventGenerator): self.order.reset() def getOrderValue(self): if isinstance(self.order, PyoObject): value = self.order.get(False) elif isinstance(self.order, EventGenerator): self.order.setMaster(self.master) value = self.order.next() if value is None: if self.stopEventsWhenDone: return None else: value = self.lastOrder else: value = self.order if value < 0: value = 0 elif value > 10: value = 10 self.lastOrder = int(value) return self.lastOrder def next(self): if self.generator is not None: return self._internalGeneratorNextCall() order = self.getOrderValue() if order is None: return None self.markov.setOrder(order) if self.count < self.occurrences: value = self.markov.next() return self._checkValueTypeAndIncrementCount(value) else: return None
###################
[docs]class EventChoice(EventGenerator): """ Plays values randomly chosen from a list. :Args: values: EventScale or list List of possible values to read. Values in list can be floats, PyoObject or other EventGenerator. occurrences: int, optional Number of values to play. Defaults to inf (infinite). stopEventsWhenDone: bool, optional If True, the Events playback will stop if this generator reaches its end. If False, the Events will ignore this signal and probably get None as value for the given parameter. It's the user responsability to handle this case correctly. Defaults to True. >>> s = Server().boot() >>> s.start() >>> scl = [5.00, 5.02, 5.03, 5.05, 5.07, 5.08, 5.10, 6.00] >>> e = Events(degree = EventChoice(scl), beat = 1/4., db = -6).play() """ def __init__(self, values, occurrences=inf, stopEventsWhenDone=True): EventGenerator.__init__(self) self.values = self._inspect_values(values) self.occurrences = self._inspect_occurrences(occurrences) self.length = len(self.values) self.stopEventsWhenDone = stopEventsWhenDone self.reset() def __len__(self): return self.occurrences def reset(self): self.generator = None self.count = 0 def next(self): if self.generator is not None: return self._internalGeneratorNextCall() self.length = len(self.values) if self.count < self.occurrences: value = random.choice(self.values) return self._checkValueTypeAndIncrementCount(value) else: return None
[docs]class EventDrunk(EventGenerator): """ Performs a random walk over a list of values. A random walk is a stochastic process that consists of a succession of random steps, within a distance of +/- `maxStep` from the previous state. :Args: values: EventScale or list List of values to read. Values in list can be floats, PyoObject or other EventGenerator. maxStep: int, PyoObject or EventGenerator, optional Determine the larger step the walk can do between two successive events. A negative 'maxStep' is the same but repetition are not allowed. Defaults to 2. occurrences: int, optional Number of values to play. Defaults to inf (infinite). stopEventsWhenDone: bool, optional If True, the Events playback will stop if this generator reaches its end. If False, the Events will ignore this signal and probably get None as value for the given parameter. It's the user responsability to handle this case correctly. Defaults to True. >>> s = Server().boot() >>> s.start() >>> scl = [5.00, 5.02, 5.03, 5.05, 5.07, 5.08, 5.10, 6.00] >>> e = Events(degree=EventDrunk(scl, maxStep=-2), beat=1/4., db=-6).play() """ def __init__(self, values, maxStep=2, occurrences=inf, stopEventsWhenDone=True): EventGenerator.__init__(self) self.values = self._inspect_values(values) self.occurrences = self._inspect_occurrences(occurrences) self.lastMaxStep = self.maxStep = maxStep self.length = len(self.values) self.stopEventsWhenDone = stopEventsWhenDone self.reset() def __len__(self): return self.occurrences def reset(self): self.generator = None self.allowRepetition = True self.count = 0 self.index = int(self.length / 2) if isinstance(self.maxStep, EventGenerator): self.maxStep.reset() def getMaxStepValue(self): if isinstance(self.maxStep, PyoObject): value = self.maxStep.get(False) elif isinstance(self.maxStep, EventGenerator): self.maxStep.setMaster(self.master) value = self.maxStep.next() if value is None: if self.stopEventsWhenDone: return None else: value = self.lastMaxStep else: value = self.maxStep self.allowRepetition = True if value < 0: value = -value self.allowRepetition = False elif value >= self.length: value = self.length - 2 self.lastMaxStep = int(value) return self.lastMaxStep def next(self): if self.generator is not None: return self._internalGeneratorNextCall() self.length = len(self.values) maxStep = self.getMaxStepValue() if maxStep is None: return None if self.count < self.occurrences: dev = random.randint(-maxStep, maxStep) while dev == 0 and not self.allowRepetition: dev = random.randint(-maxStep, maxStep) self.index += dev if self.index < 0: self.index = -self.index - dev + 1 elif self.index >= self.length: self.index = self.length - (self.index - self.length) - dev - 1 value = self.values[self.index] return self._checkValueTypeAndIncrementCount(value) else: return None
[docs]class EventNoise(EventGenerator): """ Return a random value between -1.0 and 1.0. EventNoise returns a random value between -1.0 and 1.0, based on one of three common noise generators, white, pink (1/f) and brown (1/f^2). :Args: type: int, optional The type of noise used to generate the random sequence. Available types are: 0: white noise (default) 1: pink noise 2:brown noise occurrences: int, optional Number of values to play. Defaults to inf (infinite). stopEventsWhenDone: bool, optional If True, the Events playback will stop if this generator reaches its end. If False, the Events will ignore this signal and probably get None as value for the given parameter. It's the user responsability to handle this case correctly. Defaults to True. >>> s = Server().boot() >>> s.start() >>> scl = EventScale("C", "aeolian", 4, 4) >>> note = EventNoise(1).rescale(-1,1,48,84,1).snap(scl) >>> e = Events(midinote=note, beat=1/4., db=-6).play() """ def __init__(self, type=0, occurrences=inf, stopEventsWhenDone=True): EventGenerator.__init__(self) self.lastType = self.type = type self.occurrences = self._inspect_occurrences(occurrences) self.stopEventsWhenDone = stopEventsWhenDone self.reset() def __len__(self): return self.occurrences def reset(self): self.count = 0 self.y1 = 0.0 self.c0 = self.c1 = self.c2 = self.c3 = self.c4 = self.c5 = self.c6 = 0.0 def getTypeValue(self): if isinstance(self.type, PyoObject): value = self.type.get(False) elif isinstance(self.type, EventGenerator): self.type.setMaster(self.master) value = self.type.next() if value is None: if self.stopEventsWhenDone: return None else: value = self.lastType else: value = self.type if value < 0: value = 0 elif value > 2: value = 2 self.lastType = int(value) return self.lastType def next(self): type = self.getTypeValue() if type is None: return None if self.count < self.occurrences: if type == 0: return self._checkValueTypeAndIncrementCount(random.uniform(-1.0, 1.0)) elif type == 1: rnd = random.uniform(-0.99, 0.99) self.c0 = self.c0 * 0.99886 + rnd * 0.0555179 self.c1 = self.c1 * 0.99332 + rnd * 0.0750759 self.c2 = self.c2 * 0.96900 + rnd * 0.1538520 self.c3 = self.c3 * 0.86650 + rnd * 0.3104856 self.c4 = self.c4 * 0.55000 + rnd * 0.5329522 self.c5 = self.c5 * -0.7616 - rnd * 0.0168980 val = self.c0 + self.c1 + self.c2 + self.c3 + self.c4 + self.c5 + self.c6 + rnd * 0.5362 self.c6 = rnd * 0.115926 return self._checkValueTypeAndIncrementCount(val * 0.2) else: rnd = random.uniform(-0.99, 0.99) self.y1 = rnd + (self.y1 - rnd) * 0.996 return self._checkValueTypeAndIncrementCount(self.y1 * 20.0) else: return None
###################
[docs]class EventCall(EventGenerator): """ Calls a function, with any number of arguments, and uses its return value. EventCall can call any function (built-in, from a module or user-defined) and use its return as the value for the Events's parameter where it is used. The function *must* return a single number. :Args: function: callable The function to call, which should return the value to use. args: int, PyoObject or EventGenerator, optional Any number of arguments to pass to the function call. If given a PyoObject or an EventGenerator, these will be resolved for each event and the result passed, as number, to the function. occurrences: int, optional Number of values to play. Defaults to inf (infinite). stopEventsWhenDone: bool, optional If True, the Events playback will stop if this generator reaches its end. If False, the Events will ignore this signal and probably get None as value for the given parameter. It's the user responsability to handle this case correctly. Defaults to True. >>> s = Server().boot() >>> s.start() >>> from random import randrange >>> e = Events(midinote=EventCall(randrange, 48, 72, 3), beat=1/4., db=-6).play() """ def __init__(self, function, *args, **kwargs): EventGenerator.__init__(self) self.function = function self.args = args self.occurrences = self._inspect_occurrences(kwargs.pop("occurrences", inf)) self.stopEventsWhenDone = kwargs.pop("stopEventsWhenDone", True) self.reset() def __len__(self): return self.occurrences def reset(self): self.generator = None self.count = 0 def next(self): if self.generator is not None: return self._internalGeneratorNextCall() args = [] for arg in self.args: if isinstance(arg, PyoObject): args.append(arg.get(False)) elif isinstance(arg, EventGenerator): arg.setMaster(self.master) args.append(arg.next()) else: args.append(arg) if self.count < self.occurrences: value = self.function(*args) return self._checkValueTypeAndIncrementCount(value) else: return None
###################
[docs]class EventConditional(EventGenerator): """ Executes one generator or the other depending on the result of a condition. EventConditional takes three values or generators as arguments and if the value of `condition` is True (anything that python considers True), the `iftrue` argument is used to produce the value for the event, otherwise th `iffalse` argument is used. :Args: condition: int, PyoObject or EventGenerator Conditional value. True for everything python considers True. iftrue: int, PyoObject or EventGenerator Output value if the condition is True. iffalse: int, PyoObject or EventGenerator Output value if the condition is False. occurrences: int, optional Number of values to play. Defaults to inf (infinite). stopEventsWhenDone: bool, optional If True, the Events playback will stop if this generator reaches its end. If False, the Events will ignore this signal and probably get None as value for the given parameter. It's the user responsability to handle this case correctly. Defaults to True. >>> s = Server().boot() >>> s.start() >>> from random import randrange >>> scl = EventScale("C", "aeolian", 4, 3) >>> bit = EventChoice([0, 1, 1, 1]) >>> pittrue = EventSlide(scl, segment=3, step=1, startpos=0) >>> veltrue = EventDrunk(range(64, 127), maxStep=5) >>> pit = EventConditional(bit, pittrue, 0) >>> vel = EventConditional(bit, veltrue, 0) >>> e = Events(midinote=pit, beat=1/4., midivel=vel).play() """ def __init__(self, condition, iftrue, iffalse, occurrences=inf, stopEventsWhenDone=True): EventGenerator.__init__(self) self.condition = self._inspect_generator(condition) self.iftrue = self._inspect_generator(iftrue) self.iffalse = self._inspect_generator(iffalse) self.occurrences = self._inspect_occurrences(occurrences) self.stopEventsWhenDone = stopEventsWhenDone self.reset() def __len__(self): return self.occurrences def reset(self): self.count = 0 self.lastCondition = self.lastIftrue = self.lastIffalse = 0 def getConditionValue(self): if isinstance(self.condition, PyoObject): value = self.condition.get(False) elif isinstance(self.condition, EventGenerator): self.condition.setMaster(self.master) value = self.condition.next() if value is None: if self.stopEventsWhenDone: return None else: value = self.lastCondition else: value = self.condition self.lastCondition = value return self.lastCondition def getIftrueValue(self): if isinstance(self.iftrue, PyoObject): value = self.iftrue.get(False) elif isinstance(self.iftrue, EventGenerator): self.iftrue.setMaster(self.master) value = self.iftrue.next() if value is None: if self.stopEventsWhenDone: return None else: value = self.lastIftrue else: value = self.iftrue self.lastIftrue = value return self.lastIftrue def getIffalseValue(self): if isinstance(self.iffalse, PyoObject): value = self.iffalse.get(False) elif isinstance(self.iffalse, EventGenerator): self.iffalse.setMaster(self.master) value = self.iffalse.next() if value is None: if self.stopEventsWhenDone: return None else: value = self.lastIffalse else: value = self.iffalse self.lastIffalse = value return self.lastIffalse def next(self): condition = self.getConditionValue() if condition is None: return None if self.count < self.occurrences: if condition: value = self.getIftrueValue() else: value = self.getIffalseValue() if value is None: return None else: return self._checkValueTypeAndIncrementCount(value) else: return None
# Event Player ##############
[docs]class Events(dict): """ Sequencing user-defined events to form musical phrases. The Events object is the primary tool in the events framework. It uses generators (derived from EventGenerator) as value for its arguments to build a sequence of events, each of them with their own parameters. Each time Events needs to produce a new event, it collects values from the generators given to its arguments, builds a parameter dictionary and gives it to a new instance of the audio instrument referenced to its 'instr' argument. The object produces new events until one of its generators reaches the end of its sequence. Events is a child of the dictionary class, which means that every argument given at its initialization will become a new key (with its associated value) in its memory. These keys will serve to create the parameter dictionary passed to the audio instrument instance playing this event. Inside the instrument instance, the value associated to these keys will be retrieved as instance's attributes, with the syntax self.key_name. The user can create as many new keys as needed to control its instrument, but there is already a number of pre-defined keys for which Events will do some processing and build useful parameters. Here is the list, grouped by themes, of pre-defined keys to overwrite: **Instrument** - instr: class, optional Reference to a custom class with which the events will be played. Defaults to DefaultInstrument. - signal: string, optional Name of the attribute in the instrument defintion retrieved as the output signal of the Events object. The sig() method returns the sum, as an audio signal, of all active instances. This can be useful to do post-processing on the signal produced by the events. Defaults to None. **Constants** - bpm: int, optional Beat-Per-Minute value used by the `beat` key to compute event's duration. Defaults to 120. - outs: int, optional Number of output channels in the audio signal returned by the sig() method. This value should match the number of audio streams produced by the instrument. Defaults to 2. **Duration keys** - dur: float, PyoObject or EventGenerator, optional Duration, in seconds, before the next event. Defaults to 1. - beat: float, PyoObject or EventGenerator, optional Duration, in beat value, before the next event (1 beat = quarter note at BPM). If defined, this value will be used to compute the duration in seconds for the `dur` key. Defaults to None. - durmul: float, PyoObject or EventGenerator, optional Event duration multiplier (only affects the duration of the event's lifetime, not the time to wait before the next event). Defaults to 1. - tail: float, PyoObject or EventGenerator, optional Duration, in seconds, to wait before deleting the instrument's instance when its envelope has ended. Useful to let a reverb tail to finish before cleaning-up the instance. Defaults to 2. **Amplitude keys** - amp: float, PyoObject or EventGenerator, optional Linear gain for the event (1 is nominal gain). Defaults to 0.7. - dB: float, PyoObject or EventGenerator, optional Gain, in decibels, for the event. If defined, this value will be used to compute the linear gain for the `amp` key. Defaults to None. - midivel: float, PyoObject or EventGenerator, optional Midi velocity, between 0 and 127, for the event. If defined, this value will be used to compute the linear gain for the `amp` key. Defaults to None. **Envelope keys** - envelope: PyoTableObject, optional User-defined envelope as a PyoTableObject. If defined, this will be the envelope created for the event. Defaults to None. - attack: float, PyoObject or EventGenerator, optional Rising time, in seconds, of an ASR or ADSR envelope. This envelope is created if `envelope` is None. Defaults to 0.005. - decay: float, PyoObject or EventGenerator, optional If defined, its the decay time, in seconds, of an ADSR envelope, otherwise the envelope will be an ASR (Attack - Sustain - Release). Defaults to None. - sustain: float, PyoObject or EventGenerator, optional Sustain linear gain of an ADSR or ASR envelope. Defaults to 0.7. - release: float, PyoObject or EventGenerator, optional Release time, in seconds, of an ASR or ADSR envelope. This envelope is created if `envelope` is None. Defaults to 0.05. **Pitch keys** - freq: float, PyoObject or EventGenerator, optional Frequency, in cycle per seconds, for the event. Defaults to 250. - midinote: float, PyoObject or EventGenerator, optional Midi pitch, between 0 and 127, for the event. If defined, this value will be used to compute the frequency in cycles per second for the `freq` key. Defaults to None. - degree: float, PyoObject or EventGenerator, optional Octave.degree pitch notation (ex.: 6.00, 6.04, 6.07). If defined, this value will be used to compute the frequency in cycles per second for the `freq` key. Defaults to None. - transpo: float, PyoObject or EventGenerator, optional Transposition, in midi note value (-12 is an octave lower), automatically computed in the value of the `freq` key. Defaults to 0. **Ending keys** - atend: python callable, optional If defined, a function to call when all events are played. This can be useful to sequence multiple Events objects. Defaults to None >>> s = Server().boot() >>> s.start() >>> env = CosTable([(0,0.0),(64,1.0),(8191,0.0)]) >>> scl = EventScale(root="C", scale="egyptian", first=4, octaves=3) >>> seg = RandInt(max=6, freq=0.5) >>> step = RandInt(max=6, freq=0.75, add=-3) >>> note = EventSlide(scl, seg, step) >>> e = Events(midinote=note, beat=1/4., db=[-3, -9, -9], envelope=env, durmul=1.25).play() """ def __init__(self, **args): # Instrument key self["instr"] = DefaultInstrument self["signal"] = None # Constant keys self["bpm"] = 120 self["outs"] = 2 # Duration keys self["dur"] = 1 self["beat"] = None self["durmul"] = 1 self["tail"] = 2 # Amplitude keys self["amp"] = 0.7 self["db"] = None self["midivel"] = None # Envelope keys self["envelope"] = None self["attack"] = 0.005 self["decay"] = None self["sustain"] = 0.7 self["release"] = 0.05 # Pitch keys self["freq"] = 250 self["midinote"] = None self["degree"] = None self["transpo"] = 0 # Ending keys self["atend"] = None self.instanceId = 0 self.maxInstanceId = 2 ** 31 # Add user-supplied arguments as dict attributes. for item in args.items(): self[item[0]] = item[1] self.callNextEvent = Pattern(self._processEvent).stop() self.currentDict = {} self.output = Sig([0] * self["outs"])
[docs] def events(self): """ Return a copy of this Events object. """ evts = Events() for attr in list(self): try: evts[attr] = self[attr].copy() except: evts[attr] = self[attr] return evts
[docs] def play(self, dur=0, delay=0): """ Start the events playback. This method returns `self`, allowing it to be applied at the object creation. :Args: dur: float, optional Duration, in seconds, of the object's activation. The default is 0 and means infinite duration. delay: float, optional Delay, in seconds, before the object's activation. Defaults to 0. """ if not issubclass(self["instr"], EventInstrument): print("`instr` argument must be a sub-class of EventInstrument...") print("... Events is using DefaultInstrument!") self["instr"] = DefaultInstrument self.actives = {} self.callAtEnd = None if callable(self["atend"]): self.callAtEnd = CallAfter(self["atend"], 0).stop() for key in [k for k in self.keys() if k not in ["instr", "signal", "bpm", "outs", "atend"]]: if self[key] is None or isinstance(self[key], PyoObjectBase): pass elif type(self[key]) in [type([]), type(())]: self[key] = EventSeq(self[key]) elif type(self[key]) in [type(0), type(0.0)]: self[key] = EventSeq([self[key]]) else: self[key].resetEmbeddedGenerator() self[key].reset() self.callNextEvent.play(dur=dur, delay=delay) return self
[docs] def stop(self, wait=0): """ Stop the events playback. :Args: wait: float, optional Delay, in seconds, before the process is actually stopped. Defaults to 0. """ self.callNextEvent.stop(wait=wait)
def getCurrentDict(self): return self.currentDict
[docs] def sig(self): """ Return the audio output signal (sum of all active instances), if defined. The audio output signal of an Events object is the sum of the active instrument instances's attribute whose name is the same as given to the 'signal' key. The number of audio streams in the output signal is determined by the value for the key 'outs', it should match the number of audio streams produced by the instrument. """ return self.output
def _processEvent(self): """Create instrument instances and add them to the active list.""" quarterDur = 60.0 / self["bpm"] self.currentDict = { "removeFunction": self._remove, "bpm": self["bpm"], "outs": self["outs"], "instanceId": self.instanceId, } # Compute time before next event and current event's duration. if self["beat"] is not None: nextBeat = getValueFromAttribute(self, "beat", self.currentDict) if nextBeat is not None: nextDurMul = getValueFromAttribute(self, "durmul", self.currentDict) if nextDurMul is not None: timeBeforeNextEvent = quarterDur * nextBeat self.currentDict["dur"] = timeBeforeNextEvent * nextDurMul else: nextDur = getValueFromAttribute(self, "dur", self.currentDict) if nextDur is not None: nextDurMul = getValueFromAttribute(self, "durmul", self.currentDict) if nextDurMul is not None: timeBeforeNextEvent = nextDur self.currentDict["dur"] = timeBeforeNextEvent * nextDurMul if "dur" not in self.currentDict: self.callNextEvent.stop() return else: self.callNextEvent.time = timeBeforeNextEvent ending = False # Process event's every other attributes. proscribe = ["dur", "beat", "instr", "bpm", "outs", "midinote", "degree", "db", "midivel", "atend", "signal"] for arg in [k for k in self.keys() if k not in proscribe]: if arg == "freq": transpo = getValueFromAttribute(self, "transpo", self.currentDict, valueIfNone=0) transpo = midiToTranspo(transpo + 60) self.currentDict["transpo"] = transpo if self["midinote"] is not None: midiNote = getValueFromAttribute(self, "midinote", self.currentDict) if midiNote is not None: self.currentDict["midinote"] = midiNote self.currentDict["freq"] = midiToHz(midiNote) * transpo elif self["midinote"].stopEventsWhenDone: ending = True elif self["degree"] is not None: degree = getValueFromAttribute(self, "degree", self.currentDict) if degree is not None: midiNote = degreeToMidiNote(degree) self.currentDict["midinote"] = midiNote self.currentDict["freq"] = midiToHz(midiNote) * transpo elif self["degree"].stopEventsWhenDone: ending = True else: freq = getValueFromAttribute(self, "freq", self.currentDict) if freq is not None: self.currentDict["freq"] = freq * transpo elif self["freq"].stopEventsWhenDone: ending = True elif arg == "amp": if self["db"] is not None: db = getValueFromAttribute(self, "db", self.currentDict) if db is not None: self.currentDict["db"] = db self.currentDict["amp"] = pow(10.0, db * 0.05) elif self["db"].stopEventsWhenDone: ending = True elif self["midivel"] is not None: midivel = getValueFromAttribute(self, "midivel", self.currentDict) if midivel is not None: midivel = max(min(midivel, 127), 0) self.currentDict["midivel"] = midivel self.currentDict["amp"] = midivel / 127.0 elif self["midivel"].stopEventsWhenDone: ending = True else: amp = getValueFromAttribute(self, "amp", self.currentDict) if amp is not None: self.currentDict["amp"] = amp elif self["amp"].stopEventsWhenDone: ending = True elif self[arg] == None: self.currentDict[arg] = None else: value = getValueFromAttribute(self, arg, self.currentDict) if value is not None: self.currentDict[arg] = value elif self[arg].stopEventsWhenDone: ending = True if ending: if self.callAtEnd is not None: self.callAtEnd.play() self.callNextEvent.stop() else: self.actives[self.instanceId] = self["instr"](**self.currentDict) if self["signal"] is not None: self.output.value = sum( [ getattr(instr, self["signal"]) for instr in self.actives.values() if hasattr(instr, self["signal"]) ] ) self.instanceId += 1 if self.instanceId >= self.maxInstanceId: self.instanceId = 0 def _remove(self, instanceId): """ Removes an instrument instance from the active list. """ if instanceId in self.actives: del self.actives[instanceId] if self["signal"] is not None: self.output.value = sum( [getattr(instr, self["signal"]) for instr in self.actives.values() if hasattr(instr, self["signal"])] )